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Introduction: 

In this project, we explore different Reinforcement Learning (RL) and Deep Reinforcement 

Learning algorithms on a few environments. Specifically, we explore Q-Learning on a Taxi 

environment, Deep Q-Learning, Double DQN, Dueling architectures and A2C on CartPole and 

finally Deep Q-Learning on Atari Breakout. The Taxi environment has a finite state space and 

can be solved by using a basic Q-Learning algorithm. The CartPole has a continuous state space 

and is solved by using Deep Q Learning, but our agent only has to process a few sensory inputs 

to take actions. In Breakout, our agent has to learn directly from the pixel data, which is both 

extremely large state space and also a complex visual input that needs to be comprehended. 

In RL, an agent interacts with the environment, moves to a new state and receives an immediate 

reward from the environment. The agent aims to learn a policy, or map from observations to 

actions in order to maximize its returns (expected sum of rewards). In model-free methods, no 

model of the environment is required, and the agent learns about the environment by taking 

actions and sampling from it. In many practical problems, the states of the MDP are high 

dimensional and cannot be solved by traditional RL algorithms. This is where Deep 

Reinforcement Learning (DRL) algorithms incorporate deep learning to solve such MDPs, often 

representing the policy or other learned functions as a neural network and train these from its 

experiences. These networks are efficient function approximators, even in environments with 

very large state or action spaces. 

Deep reinforcement learning constitutes a set of architectures/ algorithms of RL where the state-

space of the problem is too large to be captured as tabular data. A popular application of Deep 

RL is in creating agents which can play games, as the state space is of the order of the number of 

pixels. Using deep networks also substitutes the task of feature engineering, as convolutional 

neural networks can take raw pixels as input and construct features from them. The objective of 

our project is to create an agent using Deep RL which can learn to play Breakout from scratch. 

The work was divided as follows:  

 Pranjal implemented the Q-Learning on Taxi, Deep Q-Learning, double DQN and 

duelling architectures for the CartPole. He also implemented the DQN architecture for 

Atari Breakout and trained the model with lives lost added. 

 Sahana implemented A2C methods on Cartpole and Breakout environments.  

 Viren performed the training, evaluation and created the videos of our agent playing the 

game.  



 

Detailed Description 

The Atari Breakout environment is much more complex and requires understanding pixel data 

directly, which is an extremely hard task. This is why we first experimented with a few simpler 

environments.  To speed up our experiments, we also tested various other algorithms on these 

environments. This helped us get results quickly and also debug faster. We used the Open AI 

gym environment for all our experiments.  

Taxi-v3 

In this environment (shown in Figure 1), we have an agent driving a taxi (represented by the 

yellow square) that needs to pick up the passenger at the blue spot and drop them off at the red 

spot. There are barriers that it cannot cross, represented by „|‟. The actions the agent can take are 

move north, move south, move east, move west, pickup and drop-off. The agent gets a reward of 

-1 for every step that it takes. It gets a reward of -10 every time it tries to pickup or drop-off the 

passenger at the wrong spot (a penalty) and gets a reward of +20 if it drops the passenger off at 

the right spot. Using only these rewards, our agent must figure out the optimal path to take.  

 

Figure 1: Taxi environment 

If we use a random agent to solve this problem, the number of time steps taken averaged over 

100 trials is 2674.98, and the Penalties incurred is 1432.78. We then use a RL algorithm called 

Q-learning, where we store a table that contains the value of being in a particular state, and 

taking a particular action. This value is an estimate of the future reward that we can obtain, 

starting from the current state, and taking a particular action. This is called the action value, or 

Q-value of the current state. After training our agent with Q-Learning over 100,000 episodes, the 

average time steps taken evaluated over 100 trials is 12.78 and our agent incurs no penalties. The 

reward plot obtained during evaluation is shown in Figure 2. 

 

Figure 2: Evaluation results on taxi 



CartPole-v1 

In this environment (shown in Figure 3), the agent has to balance a pole by moving a cart. The 

actions it can take are move left or move right. It cannot move past a certain distance, and it also 

cannot tilt the pole beyond a certain angle. The agent observes only the cart position, cart 

velocity, pole angle and pole velocity. Every step it balances the pole, it gets a reward of +1. The 

goal is to balance the pole as long as possible.  

 

Figure 3: CartPole environment 

If we try to use the Q-learning algorithm here, our Q-table would be extremely large and it would 

be computationally infeasible to implement it. This is because our state space is continuous. 

That‟s why the Deep Q-Learning algorithm is suitable here. We use Neural Networks as function 

approximators to estimate the Q-value of each state. The network is trained from the agents 

experiences (more detail on DQN later). The results obtained by training our agent on the DQN 

algorithm is shown in Figure 4. Initially, our agent is exploring the state space a lot, to learn 

more about its environment, which is why the rewards obtained are poor. After it learns enough 

about its environment, it starts to use this information to exploit and get higher rewards. In 

Reinforcement Learning, as in life, there must be a fine balance between exploration and 

exploitation. 

 

Figure 4: DQN training results 

In DQN we have two networks, one called the main network and one called the target network. 

The target network is updated with the weights of the main network periodically. It is mainly 

present for stability. During training in DQN, our target action values (labels) are obtained by 

maximizing over the action values of the current state obtained from the target network. Since 

these values are noisy, we will probably obtain unfavourable actions. This method also almost 

always leads to overestimation of the true action value. Thus, the DQN leads to suboptimal 

policies. This is why we decided to try double DQN for the same task. 



In double DQN, we maximize over the action values of the current state obtained from the main 

network, to take an action and evaluate the action taken by using the target network. In this way, 

we avoid over estimating our action values and this leads to a better policy. The results obtained 

by training our agent on the double DQN algorithm are shown in Figure 5. We can see a better 

growth of the rewards when the agent starts to learn. 

 

Figure 5: double DQN training results 

Next we tried the Dueling architecture. Instead of directly predicting a single Q-value for each 

action, the Dueling architecture splits the final layer into two streams that represent the value and 

advantage function. The value function depends only on the state and the advantage function 

depends on the state and action. Intuitively, the Dueling architecture can learn which states are 

(or are not) valuable, without having to learn the effect of each action for each state. In this way, 

the duelling architecture can more quickly identify during policy evaluation the actions that are 

redundant. It also quickly identifies the correct action to take under critical circumstances. The 

results obtained by using the Dueling architecture together with DQN are shown in Figure 6. 

 

Figure 6: Dueling architecture training results 

Actor Critic Methods (A2C) 

Actor critic architectures fall into the category of model-free algorithms, where the state-space is 

too large to be expressed in a Q table, and hence use function approximators to estimate the 

policy or the state value. These algorithms use two function approximators: the actor and the 

critic. The task of the actor is to learn the policy directly: it does so using the policy gradient 

updates (described below) and the task of the critic is to estimate the state-value function. The 

general idea is that over iterations, the actor gets better at picking the best action and the critic 

network gets better at evaluating the true value of the states the environment passes through with 



the actions chosen by the actor. This is an on-policy learning method, we are updating the same 

policy that we are following.  

The critic network is similar to the Q network of the DQN: the updates happen based on the loss 

function between the observed rewards in an episode (or within a given number of steps) and the 

current estimate of the value of the state. The actor network updates are done using the policy 

gradients. The policy optimization function is the expected reward when following that policy, 

and we know a reward is generated for every state transition. So, the policy optimization 

function can be expressed as the expected value of reward-weighted probability density function 

of the transitions. 

When the update is used in the exact form as shown above, it leads the REINFORCE algorithm. 

But the reward term associated with the transition adds a lot of variance to the policy updates, 

hence we introduce baselines: which are estimates of the reward or some modification of it. 

Depending on the baseline chosen, we have different policy gradient algorithms, in A2C, the 

reward is replaced by the advantage function which is the difference between the action-value 

function and the state-value function. 

We tried A2C algorithm on two games: Cartpole and Breakout. In either case the environment 

was provided by OpenAI Gym. We used the same cartpole environment as in the previous parts. 

The results are shown in Figure 7. During evaluation, we observed that the agent can get an 

average reward of 199. 

 

Figure 7: (left) A2C architecture, (right) Reward/episode plot during training 

The breakout setup (environment explained later) is the same as explained before. The 

architecture (shown in Figure 8) is also similar to the one shown above, the main difference 

being that we use convolutional layers as feature extractors on the state space. We flatten the 

output of the convolutional layers and feed it into the actor and critic networks. 

 

Figure 8: A2C architecture for Breakout 

 



Atari Breakout  

In this environment (shown in Figure 9), we have an agent controlling a slider. The agent hits a 

ball with the slider in order to break the tiles. The agent can either move left or right. In each 

step, the agent observes image frames from the previous 4 time steps and uses that information to 

take an action. The agent gets a reward of +1 for every tile it breaks. It has 5 lives in total and 

loses a life every time it misses the ball. The goal is to break as many tiles as possible before 

running out of lives. 

 

Figure 9: Atari Breakout environment 

Since our state space is very large, we again use Deep Q-Learning. The overall architecture of 

our model is shown in Figure 10. 

 

Figure 10 : Overview of the DQN architecture 

Each individual block is explained below: 

 The Environment: The agent interacts with the environment by taking actions. In 

response, the environment returns frames that represent the state of the game after taking 

that action. The frames from 4 previous time steps are stacked and returned as states. We 

convert each frame from 210x160x3 RGB images to 84x84 grayscale to speed up 

computation.  

 The Q-network and the target Q-network: The Q-network and the target network have the 

same architecture. The input is the state obtained from the environment. Our network 

architecture consists of convolutional layers followed by dense layers. The outputs of the 

network are action values of the input state. The main network is used to select actions 

and is trained from the experiences sampled from the experience replay block. The target 

network is periodically updated with the weights of the main network. This helps keep 

the training labels stationary for a while and thus provides training stability. 

 



 Replay Memory: It is a buffer that consists of past experiences in the form of (state, 

action, reward, next state, episode termination flag). It has a finite capacity so that the 

network is updated with only relatively recent experiences. Batches of these experiences 

are drawn from this block during training. We draw these samples randomly to break any 

correlations between samples. The target Q values used in training the main network are 

calculated from these experiences. 

 DQN loss: The loss function is Huber loss, which is less sensitive to outliers. We also 

chose the Adam optimizer for gradient descent. The remaining hyperparameters such as 

filter sizes, replay memory lengths etc. were chosen to match the value in the Deepmind 

paper. The experiences obtained from replay memory contain information on the action 

taken and the reward obtained. The Huber loss is calculated between the Q-value for the 

action taken (obtained from the Q-network) and the calculated target Q-values (obtained 

by using Bellman Optimality on the next state Q-value obtained from target Q-network 

and the reward obtained from experience). The weights of the Q-network are updated by 

backpropogating this loss. 

The evaluation was performed during training every fixed period of time. It lasted for a fixed 

number of frames. In evaluation the agent maximized over Q-values obtained from the main 

network for the current state (exploitation) to take actions. The frames were recorded and the 

total reward obtained in each evaluation episode was calculated. Using these frames, we make a 

video of the agent playing the game during each evaluation stage. In reinforcement learning, the 

training performance of the agent is a massive underestimation (unlike supervised learning) of its 

true capability, due to its constant exploration during training. This is why we don‟t report any 

training results. 

Results: 

We evaluated the agent over ten trials and found the average score our agent obtained. We also 

made a modification in our original implementation and considered a life lost during an episode 

as a terminal state in the replay memory. This incentivizes the agent to treat each life as valuable 

and avoid losing a life at all cost. The agent performed much better with this change. In both 

cases the agent performed better than the human benchmark which is the average score of 30. 

Our results are summarized in Table 1 

Implementation  Average Score Best Score  

Without accounting lives lost within 

episode 

144.6 182 

Accounting lives lost within episode 320.3 367 
Table 1: Results sumary 

After enough training our agent was able to learn the optimal policy of “tunnelling” where the 

agent digs a hole in the blocks early on and aims the ball through the hole to score many easy 

points from the ball bouncing around the top for a long time. This shows that our agent is indeed 

very farsighted, as is expected from an agent trained with reinforcement learning techniques.  
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