
A Comparison of Different Image Denoising

Variants using Partial Differential Equations

sahanajoshi1996

April 2022

1 Introduction

The need to denoise images is all too common and has wide range of applica-
tions, ranging from surveillance, medical imagery, terrain mapping, locomotion
planning, etc. It is also a common data cleaning step before the image is ready
for other vision tasks such as classification and localization. This project will
explore image denoising using the tools of partial differential equations. It will
also explore the effect of choosing different functions which smooth the image
at different rates. There is a detailed analysis for each function with examples
and plots.

2 Problem Setup

Let the image that we are trying to denoise be I(x, y) with x and y denoting the
location of a pixel. The energy functional E(I(x, y)) when framed to compute
the noise in the image, acts as a measure of noise, which can reduced by gradient
descent. The equation below shows the formulation of the energy functional
framed to reduce noise:

E(I(x, y)) =

∫
Ω

c(||∇I||)dxdy (1)

where Ω is the domain of the image, and c is any non-decreasing function. To
make the notation more explicit, c(||∇I||) is L(I, Ix, Iy, x, y). The intuition
is that noisy pixels are oddities compared to their background and
hence induce a gradient, by reducing the overall gradient of the image,
or in a general case, a non-decreasing function of the gradient, the
noise in the image also reduces.

To reduce E, the gradient of E with respect to I should be the direction of
update I(but with a negative sign for descent), given by:

It = −∇IE (2)

where t is the gradient descent fictitious time variable.

1

The Euler Lagrange equation below shows the relation between the partial
derivatives of L with respect to I, Ix and Iy as with the gradient of E.

∇IE = LI −
∂LIx

∂x
−

∂LIy

∂y
(3)

Plugging in L in eqn. 3 and simplifying, we get :

It = ∇.[
ċ(||∇I||)
||∇I||

∇I] (4)

Eqn 4 characterizes Perona-Malik diffusion Depending on different functions
chosen for c, we get different denoising effects. In this project, we will explore

three options for c: (1) c(l) = l2

2 , (2) c(l) = l and (3) c(l) = log(l).

3 Implementation

3.1 c(l) = l2

2

3.1.1 Continuous PDE

Using c in 4:

ċ(||∇I||) = 1

||∇I||
(5)

which makes the PDE
It = Ixx + Iyy (6)

3.1.2 Discretize and Compute CFL condition

This is a 2D equation and hence would require 2D Fourier transform to compute
the CFL condition. Leveraging the symmetry of the problem, we can compute
the CFL condition for 1D heat equation It = bIxx (where b is the diffusion
coefficient) and replace ∆x with ∆x√

2
. The CFL condition for the 1D heat equa-

tion (as derived in class with forward difference for time variable and central
difference for space variable is :

∆t ≤ (∆x)2

2b
(7)

Replacing ∆x with ∆x√
2
and b as 1:

∆t ≤ (∆x)2

4
=

(∆y)2

4
(8)

2

3.1.3 Finite gradient update equation

I(t+ 1)− I(t)

∆t
=

I(t, x+∆x, y) + I(t, x−∆x, y)− 2I(t, x, y)

∆x2
+

I(t, x, y +∆y) + I(t, x, y −∆y)− 2I(t, x, y)

∆x2

(9)

So the update step is:

I(t+ 1) = ∆t
I(t, x+∆x, y) + I(t, x−∆x, y) + I(t, x, y +∆y) + I(t, x, y −∆y)− 4I(t, x, y)

∆x2

+I(t)

(10)

3.1.4 Code

Here is a snapshot of the code, full code can be found in Jupyter Notebook

3.2 c(l) = l

3.2.1 Continuous PDE

Using c in 4:
ċ(||∇I||) = 1 (11)

which makes the PDE:

It =
I2xIyy − 2IxIyIxy + I2yIxx

(I2x + I2y)
3
2

(12)

But this might (will) lead to It going to ∞ when the norm of the gradient
goes to 0 because the numerator has a second order on Ix and Iy and the
denominator has a third order. To avoid this, we modify the energy functional

to the integral of c(
√
I2x + I2y + ϵ2). Reworking the Euler Lagrange equation,

the PDE is now:

It =
I2xIyy − 2IxIyIxy + I2yIxx + ϵ2(Ixx + Iyy)

(I2x + I2y + ϵ2)
3
2

(13)

Figure 1: Code for linear equation

3

3.2.2 Discretize and Compute CFL condition

The equation above resembles the geometric heat equation with diffusion only in
the tangential direction ξ with diffusion constant as 1

||∇I|| . The CFL condition

for this is

∆t ≤ 1

2b
∆x2

≤ ||∇I||
2

∆x2

(14)

To find the largest possible timestep we can take, we need to find the smallest
value ||∇I|| can take, which is ϵ. Using this, the CFL condition is:

∆t ≤ ϵ

2
∆x2 (15)

To pick an ϵ value which is helpful, we can use the histogram of the gradients
across the image are choose ϵ in the range of the gradients.

3.2.3 Finite gradient update equation

Using forward difference for the time variable and central differences for the first
and second derivative terms of the space variables, we have(ignoring variables
which remain constant to keep equations concise):

It =
I(t+ 1)− I(t)

∆t

Ix =
I(x+∆x)− I(x−∆x)

2∆x

Iy =
I(y +∆y)− I(y −∆y)

2∆y

Ixx =
I(x+∆x)− 2I(x) + I(x−∆x)

∆x2

Iyy =
I(y +∆y)− 2I(y) + I(y −∆y)

∆y2

Ixy =
I(x+∆x, y +∆y) + I(x−∆x, y −∆y)− I(x−∆x, y +∆y)− I(x+∆x, y −∆y)

4∆x∆y
(16)

which can be used in Equation 13 to compute the gradient update.

3.2.4 Code

Here is a snapshot of the code, full code can be found in Jupyter Notebook

4

3.3 c(l) = log l

3.3.1 Continuous PDE

Using c in 4:

ċ(||∇I||) = 1

||∇I||
(17)

It = ∇.[
1

||∇I||2
∇I]

=
∂

∂x
[

Ix
I2x + I2y

] +
∂

∂y
[

Iy
I2x + I2y

]

=
Ixx[I

2
x + I2y]− [2IxIxx + 2IyIxy]Ix + Iyy[I

2
x + I2y]− [2IyIyy + 2IxIxy]Iy

(I2x + I2y)
2

=
Ixx + Iyy
I2x + I2y

−
2[I2xIxx + 2IxIyIxy + I2yIyy]

(I2x + I2y)
2

(18)

3.3.2 Discretize and Compute CFL condition

There are two problems here : (1)Since it is a non-linear PDE, we cannot directly
apply Fourier transform to arrive at the CFL condition. (2) There is also the
squared-gradient term in the denominator which can go to zero when Ix and
Iy are both 0 making it impossible to take a time-step when this situation is

Figure 2: Code for geometric equation

5

encountered. Focusing on the second problem, we can modify energy equation
by adding a constant ϵ which helps us in circumventing this situation as shown
below:

ċ(||∇I||) = 1

||∇I||
=

1√
I2x + I2y + ϵ2

(19)

Using this change we can get :

It =
∂

∂x
[

Ix
I2x + I2y + ϵ2

] +
∂

∂y
[

Iy
I2x + I2y + ϵ2

]

=
Ixx[I

2
x + I2y + ϵ2] + Iyy[I

2
x + I2y + ϵ2]− Ix[2IxIxx + 2IyIxy]− Iy[2IyIyy + 2IxIxy]

(I2x + I2y + ϵ2)2

=
[Ixx + Iyy]ϵ

2 + Ixx[I
2
y − I2x] + Iyy[I

2
x − I2y]− 4IxIyIxy

(I2x + I2y + ϵ2)2

=
[Ixx + Iyy]ϵ

2 + [Ixx − Iyy][I
2
y − I2x]− 4IxIyIxy

(I2x + I2y + ϵ2)2

(20)

Luckily, this PDE is quasi-linear, i.e, the highest order derivatives are of first
degree, so we can linearize this by assuming first-order derviatives as constants
and then compute the CFL condition :)

Let Ix = a and Iy = b

It =
[Ixx + Iyy]ϵ

2 + [Ixx − Iyy][b
2 − a2]− 4abIxy

(a2 + b2 + ϵ2)2

=
Ixx[ϵ

2 + b2 − a2] + Iyy[ϵ
2 + a2 − b2]− 4abIxy

(a2 + b2 + ϵ2)2

(21)

This is a 1-D diffusion is a particular direction determined by ϵ, b and a. The
diffusion coefficient is determined by the coefficients of Ixx and Iyy

coeffIxx =
ϵ2 + a2 − b2

(ϵ2 + a2 + b2)2
= t2

coeffIyy =
ϵ2 + b2 − a2

(ϵ2 + a2 + b2)2
= u2

(22)

Diffusion coefficient m is given by:

m =
√
t2 + u2

=

√
ϵ2 + b2 − a2 + ϵ2 + a2 − b2

(ϵ2 + a2 + b2)2

=

√
2ϵ

ϵ2 + a2 + b2

(23)

6

Reusing Eqn. 14 with b =
√
2ϵ

ϵ2+a2+b2 , we get:

∆t ≤ ϵ2 + a2 + b2

2
√
2ϵ

∆x2 (24)

The tightest time-step happens when a2 + b2 is 0, or gradient is 0 which leads
to the CFL condition:

∆t ≤ ϵ

2
√
2
∆x2 (25)

3.3.3 Finite gradient update equation

Using forward difference for the time variable and central differences for the first
and second derivative terms of the space variables, we have(ignoring variables
which remain constant to keep equations concise):

It =
I(t+ 1)− I(t)

∆t

Ix =
I(x+∆x)− I(x−∆x)

2∆x

Iy =
I(y +∆y)− I(y −∆y)

2∆y

Ixx =
I(x+∆x)− 2I(x) + I(x−∆x)

∆x2

Iyy =
I(y +∆y)− 2I(y) + I(y −∆y)

∆y2

Ixy =
I(x+∆x, y +∆y) + I(x−∆x, y −∆y)− I(x−∆x, y +∆y)− I(x+∆x, y −∆y)

4∆x∆y
(26)

which can be used in Equation 20 to compute the gradient update.

3.3.4 Code

Here is a snapshot of the code, full code can be found in Jupyter Notebook

4 Results and Analysis

4.1 Energy functional Plot

When performing gradient descent, the energy functional should reduce with
each iteration. This can be used as a smoke test to ensure that the functional
is reducing, the same is shown in the images below.

7

Figure 3: Code for log-equation

Figure 4: c(l) = l2

2

Figure 5: c(l) = l

8

4.2 Qualitative results

We take an original, clean image and add Gaussian noise to it as shown in the
figure below.

Following are the denoising processes at different iterations.
The geometric heat equation does a much better job at denoising compared

to the linear heat equation. It retains the sharpness of edges because the diffu-

Figure 6: c(l) = log(l)

Figure 7: Original Image Figure 8: Noisy Image

Figure 9: Denoising using Linear Heat Equation

9

Figure 10: Denoising using Geometric Heat Equation

Figure 11: Denoising using Log-Equation

10

sion happens only along the tangential direction of the edges. The linear heat
equation does a better job than log-equation, my intuition is that the log func-
tion maps a large domain to a smaller range compared to linear and quadratic,
making gradients which are fairly far apart result in similar energies.

ϵ plays a key role in the denoising process: if it is too large, the effect
resembles the linear heat equation, if it is too small, it would make the gradient
update step unstable.

4.3 Quantitative results

To see which method performs better, we take the mean-squared error(MSE)
between original image and the denoised image at different iterations and be-

Figure 12: Linear, Geometric and Log Equation(L to R) at iteration 50

Figure 13: Histogram of norm of gradient to select good ϵ

Figure 14: Effect on ϵ: from left ϵ = 20, 300, 1000 for Geometric Heat Equation

11

tween the two methods. As seen from the figure below, we can see at each
iteration, the MSE of linear heat equation is higher compared to geometric heat
equation, showing that it performs better. Linear heat equation performs better
than log-equation.

5 Conclusion

• Geometric heat equation performs better than Linear heat equation qual-
itatively and quantitatively

• Geometric heat equation penalizes smooth edges more and sharp edges
lesser, accentuating them with each iteration, this can be seen in the
way the eyes of the puppy become sharper and the outline of the puppy
becomes more merged with the background with each iteration

• Linear heat equation diffuses along tangential and normal direction, giving
a blurring effect.

Figure 15: Effect on ϵ: from left ϵ = 20, 300, 1000 for Log Equation

Figure 16: MSE across iterations

12

