
TECLAT: Transition Encoding using Contrastive
Learning based Auxiliary Tasks for Sample

Efficiency
Sahana Joshi

School of Electrical and Computer Engineering
Georgia Institute of Technology

Atlanta, USA
sjoshi330@gatech.edu

Abstract—Most model-free reinforcement learning(RL) algo-
rithms in RL employ policy gradient methods to directly learn a
parameterized policy. While this avoids the overhead of learning
the dynamics of the environment, they are less sample-efficient.
Auxiliary tasks are known to improve sample-efficiency by
leveraging other training signals present in the environment;
the reasoning being that solving auxiliary tasks helps the agent
build better representations. Contrastive learning(CL) is a self-
supervised learning technique used to build good representations
across domains(visual, language and RL). Previous works which
have tried CL in RL have used RGB state observations or latent
space representations of state as input for computing contrastive
loss. The objective of this paper is to extend a CL based auxiliary
task baseline (CURL) to encode full transition information, i.e,
state, action and next state. The intuition is that this will build
representations that have cause and effect embedded in them and
will act as additional training signals.

Index Terms—reinforcement learning, auxiliary tasks, con-
trastive learning, CURL

I. INTRODUCTION AND RELATED WORK

Auxiliary tasks are objectives which are different from the
main one of maximizing the return. They can be reward-
agnostic, and usually are in cases where reward is sparse.
Jaderberg et al. [1] introduce two kinds of tasks: con-
trol(generate pseudo-rewards when agent changes the environ-
ment in a desired way) and reward tasks(train to predict the
reward given a state, action information). The agent is trained
with a loss which is a weighted sum of losses from the main
and auxiliary tasks. van den Oord et al. [2] introduce Con-
trastive Predictive Coding for representation learning, which
combines next state prediction in latent space with a novel
contrastive loss function called InfoNCE. They demonstrate
the breadth of contrastive objective with results from speech,
image, text and RL domains. Srinivas et. al [3] introduce
CURL which is the baseline for this paper. CURL creates
a contrastive objective on the raw pixel observations and uses
this objective as an auxiliary task in the agent training pipeline.
The CURL encoder is jointly trained with the return-loss and
the contrastive loss. This paper extends CURL by learning
a contrastive objective over state transitions, i.e, treating the

College of Computing, Georgia Institute of Technology

(state, action, next state) as the input to the encoder. The
intuition is that this would encode cause and effect relations
in the encoder because we are trying to extract features from
not just the current state, but that from the current state, an
example action taken in that state and the resultant next state.
The motivation is that since we are building a more enriched
encoder, it would be capable of constructing representations
which lead to good policies faster, hence improving sample ef-
ficiency. Key contributions: Novel encoder to embed transition
information.

II. METHODOLOGY

A. Baseline : Pixel encoder from CURL

The CURL architecture as in Fig. 1 shows the training of the
agent with main and contrastive auxiliary tasks. Observations,
which are stacked RGB frames are sampled from the replay
buffer. Data augmentation, such as random crop is performed
on the observation to generate query and key pairs. The query
acts as the anchor for CL objective and the key acts as the
positive sample. Other similarly cropped observations from the
mini-batch serve as negatives. The CL objective is to match
a given query q with its data augmented twin key k from a
set of negative samples, which are augmentations of different
observations. The Query and Key encoders are both pixel
encoders which accepts raw RGB observations as input and
produce embeddings for the query and key augmentations. q
and k are used to compute the contrastive loss. q is used as the
state embedding by the RL objective which computes policy.
The Key encoder is the momentum averaged version of the
query encoder, which Srinivas et al. [3] cite as being similar
to the target network in DQN [4], used to stabilize training of
the query encoder.

B. Alpha : Full Transition encoder

In TECLAT, we introduce a novel encoder, shown in which
consists of a copy of the pixel encoder network and a MLP
network. The encoder takes the state and next state to produce
corresponding embeddings. The embeddings are combined
with the action and passed to the MLP network to compute a

https://arxiv.org/pdf/2004.04136.pdf

Fig. 1. CURL Architecture

score T target(s,a,s’). In this pass, we do not accumulate the
gradients in the Transition Encoder network.

The sampled transitions’ state and next states are also passed
to the critic’s(and actor’s) pixel encoder and the embeddings
from this combined with the action are passed to the Transition
encoder’s MLP network to arrive at a score T(s,a,s’). In this
pass, we accumulate gradients in the critic’s pixel encoder and
the transition encoder’s MLP network.

The mean-squared error between T target and T is used
an an auxiliary loss to update the weights of the critic’s
encoder and the MLP network. The weights of the critic’s pixel
encoder are periodically moved to the transition encoder’s
pixel encoder, similar to the the DQN architecture Mnih et. al
[4].

Fig. 2. (top) Critic network computes T, accumulating gradients (middle)
Transition network computes T target (bottom) Periodic weight duplication
between Pixel encoders of Transition network and Critic network

This architecture is different from the one presented at the
mid-term stage and was brought about by the poor perfor-
mance obtained by entirely replacing the Pixel encoder with
the Transition Encoder which had similar CNN structure as
the Pixel encoder(refer mid-term report). The earlier structure
did not make much sense because an action is taken based
on the state as input and not a full transition. Hence, learning
from full transitions is useful as an auxiliary task and not as
a replacement for the Pixel encoder.

III. RESULTS

Similar to CURL, we used DeepMind Control
Suite(dm2gym) environments. Due to limited resources,

we ran experiments on 3 games, tasks: CartPole, Swingup,
Cheetah, Run and Walker, Walk. We also limited the number
of timesteps to 100k(instead of 1M in CURL paper) for the
same reasons.

A. Baseline

The results from the baseline are as shown in the table
below. The training and evaluation plots are in Fig. 3

TABLE I
BASELINE RESULTS AT 60K TIMESTEPS

Game/task Score
Cartpole, Swingup 838.3

Cheetah, Run 321.9
Walker, Walk 481.7

Fig. 3. Baseline: Training and Evaluation plots of reward v/s timestep

B. Alpha: Full transition encoder

The results from the initial implementation of the FullTran-
sition encoder are shown in the table below. Due to training
constraints, at the moment, we only have the result for the
Walker, Walk task. The training and evaluation plots are in
Fig. 4

TABLE II
ALPHA RESULTS AT 60K TIMESTEPS

Game/task Score
Walker, Walk 15.8

As seen from the results above, the full transition encoder
performs very poorly compared to the Pixel encoder and is
not able to learn any reasonable policy, let alone one that
improves sample efficiency. Upon applying the architecture
change described in the previous section, we can see that there
is a good boost in performance in training and evaluation as

Fig. 4. Old Alpha: Training and Evaluation plots of reward v/s timestep

Fig. 5. New Alpha: Training plot of reward v/s timestep

Fig. 6. New Alpha: Evaluation plot of reward v/s timestep

Fig. 7. Multiple losses affecting encoder

seen in Fig. 5 and Fig. 6. The reward curves confirms that the
new architecture is effective in learning a decent policy.

There are multiple losses affecting the training of the critic,
in turn, the training of its encoder: the value function loss and
the newly added transition loss. As seen in the Fig. 7, the
vanilla critic loss(left) is of a much higher magnitude than the
transition loss. So we formulate the hypothesis below:

If the auxiliary transition loss is actually aiding in learn-
ing, then adding a higher weight to this loss should boost
performance, i.e, if in an attempt to aggressively reduce the
transition loss, better representations arise, then this will lead
to sample efficiency.

Fig. 8. Increasing weights on transition loss(training): blue: 1, grey: 10k,
blue: 100k

To test this hypothesis, we ran experiments with with
increasing weights on the transition loss. The results of this
experiment are shown in Fig. 8. As seen, increasing the weight
boost performance, with a huge jump of 70 points from weight
1 to 10e4 at as early as 25k timesteps, and again a jump of 25
points from weight 10k to 100k. This confirms the hypothesis
that transition loss is aiding in learning.

Since there is an increasing trend in performance, there is
scope of squeezing gains indefinitely by increasing weights
further, but keeping an eye on evaluation performance(Fig. 9)
shows that the increase in performance is not as drastic as
seen in training(differences as small as 10 points). This
difference in training and evaluation trends can be attributed
to generalization error arising from potential over-fitting.

Further, we compare the best performing alpha network
setting with a weight 100k to the baseline network as shown in
Fig. 10. As seen, the alpha network not only outperforms the
baseline throughout the training curve, but also attains sample
efficiency at as early as 16k timesteps. The experiment was
tried with 3 random seeds to ensure consistency.

Unfortunately, the success of the architecture did not gen-
eralize to Walker, Walk and Cheetah, Run tasks as shown in

Fig. 9. Increasing weights on transition loss(eval): blue: 1, grey: 10k, blue:
100k

Fig. 10. Sample Efficiency Comparison

Fig. 11 and Fig. 12. This could be because hyper-parameter
tuning required for the tasks.

IV. LEARNINGS AND CONCLUSIONS

In conclusion, we have proposed a novel encoder which
extends a strong baseline CURL to learn from full transi-
tions instead of just states. The idea is to extract as much
information as possible from interactions with the environment
in the attempt learn better representations and attain sample

Fig. 11. Poorer performance than baseline on Cheetah,Run task

Fig. 12. Poorer performance than baseline on Walker,Walk task

efficiency. We use this encoder to predict a transition score(T)
as an auxiliary task and use this loss in tandem with other
losses of the architecture(like actor loss, critic loss , entropy
loss) to update the weights of the encoder. The architecture
proposed imbibes concepts like target network from DQN used
for stabilizing learning.

A salient feature of this alpha network is that the transition
scores(T and T target) do not rely on the reward, unlike
the value function. So it can prove to be more useful when
the environment gives sparse rewards like RTS games like
Starcraft2, although we have only tested on environments with
fairly dense reward settings in this project.

From the experiments conducted, transition encoding is
helping in achieving sample efficiency. It does however require
more training time due to additional parameters added. As seen
from the evaluation graphs, it is also subject to over-fitting.

Future work would include expanding testing to other games
with continuous action space and sparse-reward settings. Ab-
lation studies and hyper parameter tuning on this architecture
would comprise of questions like (1) How sensitive is the
transition loss weight to the task at hand? (2) How does the
weight duplication frequency affect learning? (3) Can other
loss functions replace the mean-squared loss used in this
project?

REFERENCES

[1] Max Jaderberg, Volodymyr Mnih , Wojciech Marian Czarnecki, Tom
Schaul, Joel Z Leibo, David Silver and Koray Kavukcuoglu “RE-
INFORCEMENT LEARNING WITH UNSUPERVISED AUXILIARY
TASKS”

[2] Aaron van den Oord, Yazhe Li, Oriol Vinyals, “Representation Learning
with Contrastive Predictive Coding”

[3] Aravind Srinivas, Michael Laskin, Pieter Abbeel, “CURL: Contrastive
Unsupervised Representations for Reinforcement Learning”.

[4] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves,
Ioannis Antonoglou, Daan Wierstra, Martin Riedmiller Playing Atari
with Deep Reinforcement Learning

https://arxiv.org/pdf/1611.05397.pdf
https://arxiv.org/pdf/1611.05397.pdf
https://arxiv.org/pdf/1611.05397.pdf
https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/1807.03748
https://arxiv.org/pdf/2004.04136.pdf
https://arxiv.org/pdf/2004.04136.pdf
https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf

	Introduction and Related Work
	Methodology
	Baseline : Pixel encoder from CURL
	Alpha : Full Transition encoder

	Results
	Baseline
	Alpha: Full transition encoder

	Learnings and Conclusions
	References

